基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

亚超临界 RP-3 航空煤油的热物性研究 毕业设计中期报告

沈扬

清华大学航天航空学院,工程热物理研究所

2022年2月28日

指导教师: 曹炳阳

- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究
- 4 煤油热物性的分子动力学模拟研究

5 计划进度

研究意义 替代模型 不足与目标

- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
○●○○○○○○○	0000000000000	000000	000000000	000
研究意义				

谷代模型 不足与目标

- 2 C4+ 替代模型构建
- ③基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

在发动机冷却系统中,航空煤油往往被用作冷却剂去吸收机体的热量.在实际工作过程中,航空煤油往往工作在超临界工况下,各物性随温度、压力的变化将发生很大的改变.

因此,准确地计算超临界状态下航空煤油的各个热物性,对 流动换热、以及后续喷注、燃烧等过程的研究具有重要的意义.

图 1: 3 MPa下 RP-3 航空煤油各热物性随温度的变化

沈扬

5 / 41

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
○○○●○○○○○	0000000000000	000000	000000000	000
替代模型				

替代模型

- 不足与目标
- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

由于实际航空煤油的十分复杂,由上百种组分构成,不可能 对每一种组分均进行模拟。在实际研究中,根据不同需要,常选 取代表性组分构成简化替代物模型,模拟实际燃料的性质.

表 1: 研究测得 RP-3 成分 (质量百分比)¹

饱	和烃	不饱	和烃		芳	香族化合物	
链烷烃	环烷烃	直链烯烃	环烷烯烃	醇类	芳烃类	萘及其衍生物	其他成分
49.55%	26.37%	1.83%	0.23%	2.94%	4.12%	11.24%	3.72%

¹Pei Xinyuan Hou Lingyun. Effect of different species on physical properties for ther surrogate of aviation fuel[J]. J Tsinghua Univ(Sci & Technol), 2017.

研究背景 ○○○○○●○○○○	C4+ 替代模型构建 0000000000000	基于神经网络的替代模型构建方法探究 000000	煤油热物性的分子动力学模拟研究 000000000	计划进度 000
替代模型				
替代模型	민			

表 2: 航空煤油的几种典型替代模型 (Cn 指模型中的组分数目)

Species	Chemical formula	Surrogate model components in mole fraction				
		C1	C3	C4	C6	C10
n-Octane	C8H18	0	0	0	0.0312	0.0600
n-Decane	C10H22	1	0.4900	0.2030	0	0.1000
n-Dodecane	C12H26	0	0	0.3810	0.2227	0.2000
n-Tridecane	C13H28	0	0	0	0	0.0800
n-Tetradecane	C14H30	0	0	0	0	0.1000
n-Hexadecane	C16H34	0	0	0	0.0706	0.1000
Methylcyclohexane	C7H14	0	0	0.1470	0	0.2000
trans-1,3- Dimethycyclopentane	C7H14	0	0	0	0	0.0800
1,3,5- Trimethylcyclohexane	C9H18	0	0.4400	0	0	0
Xylene	C8H10	0	0	0	0.2111	0
Propylbenzene	C9H12	0	0.07	0	0	0.0500
n-Butylbenzene	C10H14	0	0	0.2690	0	0
Tetralin	C10H12	0	0	0	0.1632	0

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
○○○○○○●○○	0000000000000	000000	000000000	000
不足与目标				

研究意义 替代模型 不足与目标

- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

研究育京 00000000000000	C4+ 谷代侯空构建 0000000000000	基于伸至网络的督代模型构建力法抹充 000000	除油热物性的分士初力字模拟研究 000000000	订划进度 000
不足与目标				
现有问题	页			

- 各模型预测 RP-3 各热物性与实验值的相对误差仍然较大
- 模型在高温区失效

图 2: 不同压力下 C4 模型²计算值与 RP-3 实验值的相对误差

²Xu K K, Meng H. Analyses of surrogate models for calculatingthermophysical properties of aviation kerosene RP-3 at supercriticalpressures[J]. Science China Technological Sciences, 2015.

研究背景 ○○○○○○○○○	C4+ 替代模型构建 0000000000000	基于神经网络的替代模型构建方法探究 000000	煤油热物性的分子动力学模拟研究 000000000	计划进度 000
不足与目标				
研究目标	示			

现有研究的不足

- 现有替代模型的计算值与实验值误差仍然较大
- 温度较高时模型计算值与实验值不符

本研究的工作目标

- 采用多种手段对航空煤油替代模型的构建方法及其热物性展 开研究
- 开发适用于国产航空煤油 RP-3 在亚/超临界状态下的高精 度热物性计算模型,关注的物性主要包括 RP-3 的密度、粘 度、定压比热容及热导率
- 在新开发模型的基础上,构建 RP-3 的热物性数据库.压力
 范围: 3MPa~10 MPa,温度范围300K~750 K

2 C4+ 替代模型构建

基本思路 物性计算方法 模型构建结果

3 基于神经网络的替代模型构建方法探究

④ 煤油热物性的分子动力学模拟研究

5 计划进度

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
000000000	○●O0000000000	000000	000000000	000
其本田政				

- 2 C4+ 替代模型构建 基本思路 物性计算方法 模型构建结果
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

计划进度

表 3: C4 模型组分及摩尔分数

组分	正癸烷	正十二烷	甲基环己烷	正丁苯
摩尔分数	0.2030	0.3810	0.1470	0.2690

- 现有模型计算值与实验值的相对偏差仍然较大:
 在 C4 模型所选择的组分上,针对不同物性进行模型优化
- 在高温区模型失效: 在优化后模型的基础上,引入修正以弥补偏差

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
000000000	○○○●OO○○○○○○	000000	000000000	000
物性计質方法				

- 2 C4+ 替代模型构建基本思路 物性计算方法 模型构建结果
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

对应态法则

$$h_{x} = \rho_{r}^{c} / \rho^{c}; f_{x} = T^{c} / T_{r}^{e}$$
$$\rho_{r} = h_{x}\rho; T_{r} = T / f_{x}$$
$$Z_{x}(T, \rho) = Z_{r}(T_{r}, \rho_{r})$$

形状因子

$$\begin{aligned} h_{x} &= \left(\rho_{r}^{c}/\rho^{c}\right)\varphi\left(T/T_{c},\rho/\rho_{c},\omega\right) \\ f_{x} &= \left(T^{c}/T_{r}^{c}\right)\theta\left(T/T_{c},\rho/\rho_{c},\omega\right) \end{aligned}$$

NIST-Supertrapp

清华大学航天航空学院,工程热物理研究所

图 3: 基于遗传算法的替代模型优化流程示意图

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
000000000	○○○○○○●○○○○○	000000	000000000	000
楷刑构建结里				

- 2 C4+ 替代模型构建基本思路物性计算方法模型构建结果
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

模型构建结果

密度模型

表 4: C4+ 密度模型

组分	摩尔分数
正癸烷	$0.6220 \times (1 - f(T))$
正十二烷	$0.1100 \times (1 - f(T))$
甲基环己烷	0
正丁苯	$0.2680 \times (1 - f(T))$
环戊烷	f(T)
$^{1}f(T) =$	
$\max(0.00)$	0767T - 5.29, 0)

表 5: 计算值与实验值的相对偏差

Surrogate Model	3 MPa		4 MPa		5 MPa	
Surrogate Model	Ave (%)	Max (%)	Ave (%)	Max (%)	Ave (%)	Max (%)
C4	25.44	115.54	23.74	56.66	21.35	45.90
C4+	3.70	9.06	3.23	7.46	3.11	7.41

沈扬

清华大学航天航空学院,工程热物理研究所

亚超临界 RP-3 航空煤油的热物性研究

煤油热物性的分子动力学模拟研究 000000000 计划进度 000

模型构建结果

粘度模型

图 5:3 MPa下粘度计算结果

表 6: C4+ 粘度模型

表 7: 计算值与实验值的相对偏差

Surrogate Model	3 MPa		4 N	4 MPa		5 MPa	
Sunogate model	Ave (%)	Max (%)	Ave (%)	Max (%)	Ave (%)	Max (%)	
C4	11.43	49.22	17.56	108.06	10.73	99.25	
C4+	2.66	14.83	3.21	14.33	4.07	13.77	

沈扬

清华大学航天航空学院,工程热物理研究所

亚超临界 RP-3 航空煤油的热物性研究

图 6:3 MPa下定压比热容计算结果

表 8: C4+ 比热容模型

组分	摩尔分数
正癸烷	0.6850
正十二烷	0.2913
甲基环己烷	0.0237
正丁苯	0
1 将计算结	果乘以 R
R = 7.78	$\times 10^{-4} T +$
0.7104	

表 9: 计算值与实验值的相对偏差

Surrogate Model	3.02 MPa		4.02 MPa		4.98 MPa		5.98 MPa	
	Ave (%)	Max (%)						
C4	14.38	31.86	14.00	27.96	15.06	28.40	14.86	28.89
C4+	4.61	20.07	2.35	10.24	4.70	2.24	1.65	5.81

沈扬

清华大学航天航空学院,工程热物理研究所

计划进度

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

模型构建结果

热导率模型

耒	10:	C4+	执旦	室樟	刑
1	±0.	<u> </u>			_

组分	摩尔分数
正癸烷	0.1430
正十二烷	0
甲基环己烷	0
正丁苯	0.8570

表 11: 计算值与实验值的相对偏差

Surrogate Model	3 MPa		4 MPa		5 MPa	
burrogate model	Ave (%)	Max (%)	Ave (%)	Max (%)	Ave (%)	Max (%)
C4	9.94	12.06	10.05	12.65	10.65	13.34
C4+	4.21	5.80	4.26	6.29	4.76	6.88

沈扬

清华大学航天航空学院,工程热物理研究所

亚超临界 RP-3 航空煤油的热物性研究

表 12: C4 模型与 C4+ 模型对比

				摩尔分数		
组分	化学式	C4		C4+		
		0.	ρ	η	C_p^{a}	λ
正癸烷	$\mathrm{C}_{10}\mathrm{H}_{22}$	0.2030	$0.6220 \times (1 - f(T))^{b}$	$0.6320 \times (1 - g(T, P))^{c}$	0.6850	0.1430
正十烷	$C_{12}H_{26}$	0.3810	$0.1100 \times (1 - f(T))$	$0.1520 \times (1 - g(T, P))$	0.2913	0
甲基环己烷	C_7H_{14}	0.1470	0	$0.2160 \times (1 - g(T, P))$	0.0237	0
正丁苯	$C_{10}H_{14}$	0.2690	$0.2680 \times (1 - f(T))$	0	0	0.8570
环戊烷	C_6H_{12}	0	f(T)	0	0	0
正十八烷	$\mathrm{C}_{18}\mathrm{H}_{38}$	0	0	g(T, P)	0	0

^a Multiply calculated data by $(7.78 \times 10^{-4} T + 0.7104)$

^b $f(T) = \max(0.00767T - 5.29, 0)$

^c $g(T, P) = \max(0.0054T - 0.19P - 2.97, 0)$

2 C4+ 替代模型构建

3 基于神经网络的替代模型构建方法探究

4 煤油热物性的分子动力学模拟研究

5 计划进度

基于神经网络的替代模型构建方法探究 ○●○○○○ 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

模型构建流程

图 8: 基于神经网络 (ANN) 的模型构建流程

基于神经网络的替代模型构建方法探究 ○○●○○○ 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

图 9: 密度计算结果

组分	ļ	季尔分数	
111	C4	C4+	ANN
正癸烷	0.2030	0.6220	0.3285
正十二烷	0.3810	0.1100	0.2436
甲基环己烷	0.1470	0	0.1723
正丁苯	0.2690	0.2680	0.2556

亚超临界 RP-3 航空煤油的热物性研究

基于神经网络的替代模型构建方法探究 000●00 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

组分).	摩尔分数	
	C4	C4+	ANN
正癸烷	0.2030	0.6320	0.5957
正十二烷	0.3810	0.1520	0.1881
甲基环己烷	0.1470	0.2610	0.2106
正丁苯	0.2690	0	0.0056

清华大学航天航空学院,工程热物理研究所

亚超临界 RP-3 航空煤油的热物性研究

基于神经网络的替代模型构建方法探究 0000000 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

定压比热容模型

图 11: 定压比热容计算结果

组分	ļ	夺尔分数	
	C4	C4+	ANN
正癸烷	0.2030	0.6850	0.3396
正十二烷	0.3810	0.2913	0.2071
甲基环己烷	0.1470	0.0237	0.4453
正丁苯	0.2690	0	0

基于神经网络的替代模型构建方法探究 00000● 煤油热物性的分子动力学模拟研究 000000000 计划进度 000

组分).	季尔分数	
12/1	C4	C4+	ANN
正癸烷	0.2030	0.1430	0.1160
正十二烷	0.3810	0	0.0517
甲基环己烷	0.1470	0	0.5923
正丁苯	0.2690	0.8570	0.2400

清华大学航天航空学院,工程热物理研究所

亚超临界 RP-3 航空煤油的热物性研究

- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究

④ 煤油热物性的分子动力学模拟研究

研究目标 正癸烷的密度模拟 正癸烷粘度模拟

5 计划进度

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
000000000	0000000000000	000000	○●OOOOOOO	000
研究目标				

2 C4+ 替代模型构建

3 基于神经网络的替代模型构建方法探究

④ 煤油热物性的分子动力学模拟研究 研究目标 工業には空産構成

正癸烷粘度模拟

5 计划进度

- 目前对于超临界压力下烷烃的分子动力学模拟,尚缺乏对不同力场模拟结果之间系统性的比较。本节先通过对单组份正 癸烷模拟,分析比较计算不同物性的最优力场
- 在比较得出最优分子力场后,对本研究所构建的替代模型进行热物性模拟,以校核广义对应态法则计算结果

煤油热物性的分子动力学模拟研究

00000000

计划讲度

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度	
000000000	0000000000000	000000	○○○●○○○○○	000	
正癸烷的密度模拟					

- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究

④ 煤油热物性的分子动力学模拟研究 研究目标

正癸烷的密度模拟

正癸烷粘度模拟

5 计划进度

研究背景	C4+ 替代模型构建

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 ○○○○●○○○○ 计划进度 000

^{正癸烷的密度模拟} 体系建模

(a) 模拟前(b) 模拟后图 13: 正癸烷在 npt 系综下的模拟 (N = 600)

研究背景	C4+ 替代模型构建

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 ○○○○○●○○○ 计划进度 000

正癸烷的密度模拟

图 14:3 MPa下不同力场正癸烷密度模拟结果

研究背景	C4+ 替代模型构建	基于神经网络的替代模型构建方法探究	煤油热物性的分子动力学模拟研究	计划进度
000000000	0000000000000	000000	○○○○○○●○○	000
正癸烷粘度模拟				

2 C4+ 替代模型构建

3 基于神经网络的替代模型构建方法探究

4 煤油热物性的分子动力学模拟研究

研究目标 正癸烷的密度模拟

正癸烷粘度模拟

5 计划进度

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 ○○○○○○○●○ 计划进度 000

^{正癸烷粘度模拟} 自相关函数

图 15: 3 MPa下模拟结果

研究背景 0000000000	C4+ 替代模型构建 00000000000000	基于神经网络的替代模型构建方法探究 000000	煤油热物性的分子动力学模拟研究 ○○○○○○○○●	计划进 000
正癸烷粘度模拟				
模拟结野	₽.			

图 16:3 MPa下不同力场正癸烷的粘度模拟结果

38 / 41

- 2 C4+ 替代模型构建
- 3 基于神经网络的替代模型构建方法探究
- ④ 煤油热物性的分子动力学模拟研究

5 计划进度

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 000000000 计划进度 ○●○

四月:建立所构建替代模型的分子体系,完成模拟工作
五月:论文撰写

基于神经网络的替代模型构建方法探究 000000 煤油热物性的分子动力学模拟研究 000000000 计划进度 00●

Thanks!