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Thermal Issues in GaN HEMTs

Figure 1: IDS − VDS of GaN/Dia
and GaN/Si HEMTs 1.

Figure 2: Mean time to failure
(MTTF) for TriQuint GaN PAs 2.

Accurate thermal simulation is crucial for near-junction thermal
management and electro-thermal co-design of GaN HEMTs.

1K. Ranjan, S. Arulkumaran, G. Ng, et al., “Investigation of self-heating effect on DC and RF performances
in AlGaN/GaN HEMTs on CVD-diamond,” IEEE Journal of the Electron Devices Society, vol. 7,
pp. 1264–1269, 2019.

2M. Rosker, C. Bozada, H. Dietrich, et al., “The DARPA wide band gap semiconductors for RF applications
(WBGS-RF) program: Phase II results,” CS ManTech, vol. 1, pp. 1–4, 2009.
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Thermal Spreading in GaN HEMTs

Figure 3: Schemation of the cross-section of GaN HEMTs: (a) overall
structure (b) enlarged view in the near-junction region.

Thermal spreading resistance dominates the heat transport in
the near-junction region. Many efforts have been made to
model the thermal spreading resistance using Fourier’s law.
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Phonon Ballistic Transport in the Near-Junction Region
Phonon MFPs are comparable with the thickness of the GaN
layer and the width of the heat generation area. Phonon ballistic
transport can significantly increase the thermal resistance.

Figure 4: (a)Thermal conductivity versus film thickness or nanowire
diameter. (b) Effective conductivity versus varying heater sizes3.

3G. Chen, “Non-fourier phonon heat conduction at the microscale and nanoscale,” Nature Reviews Physics,
vol. 3, no. 8, pp. 555–569, 2021.
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Phonon Boltzmann Transport Equation

Figure 5: Schematic diagram of the cross section of the GaN HEMT
and the simulated channel temperature4.

To account for the influence of phonon ballistic transport on the
thermal spreading process, the phonon Boltzmann transport
equation (BTE) should be solved in the near-junction region.

4Q. Hao, H. Zhao, and Y. Xiao, “A hybrid simulation technique for electrothermal studies of two-dimensional
GaN-on-SiC high electron mobility transistors,” Journal of Applied Physics, vol. 121, no. 20, p. 204 501, 2017.
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Existing Simulations for GaN HEMTs

Various methods have been adopted in GaN-based device
simulations,
± Isotropic MC with empirical phonon dispersion, Hao et al.

(2017, JAP, IJHMT, TED), shen et al. (2022, TED)
± Gray MC, Donmezer et al. (2014, TED), Bikramjit et al.

(2020, JAP)
± FEM with keff, Song et al. (2020, IJHMT)

There has not been a thorough examination of the performance
and reliability of the different methods, making it challenging to
utilize the results and findings from different studies.
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This Work

± First-Principle based steady-state full-band phonon tracing
Monte Carlo simulations are developted to investigate the
near-junction thermal spreading process in GaN HEMTs.

± The reliability, accuracy, and computational efficiency of
isotropic MC, gray MC, and FEM with keff are compared
thoroughly.
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Thermal Spreading Process in GaN HEMTs
± The c-axis (polarization axis) of GaN is aligned with the

thickness direction
± Substrate and interfacial thermal resistance are not

considered in the current study
± A uniform heat flux is modeled at the top of the GaN layer

to represent the heat source

Figure 6: Schematic of thermal spreading process in the GaN layer.
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First-pinrciple Calculation
The third-order anharmonic calculation of wurtzite GaN is
performed with 15 × 15 × 15 q-point grids, generating 3375
discrete q-points. With 12 phonon branches there are total
40500 available phonon states for MC simulations.
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Figure 7: First-principle-calculated phonon peroperties of GaN at
300 K (a) Phonon dispersion along high-symmetry points. (b) Phonon
scattring rates.
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Full-band Phonon Monte Carlo Simulations
± Steady-state phonon tracing MC simulations
± Energy-based variance-reduced techinque

The number of emitted phonon bundles of a boundary with
temperature Tb can be expressed as

N (Tb) =
1

εeff V

∑
state j

v⃗j ·n⃗ℏωj
[
fBE

(
ωj ,Tb

)
− fBE

(
ωj ,Tref

)]
, v⃗j ·n⃗ > 0

The flight distance before scattering is drawn as

l⃗ = −v⃗jτj ln (Rl)

After scattering, the phonon mode is redrawn with probabilities
proportional to

ℏω [fBE (ωk ,Tloc)− fBE (ωk ,Tref)] /τk
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Interface Scattering
In the case of a collision with an adiabatic boundary, the
phonon bundle is diffusively scattered to its iso-energy state.
The probabilitity of drawing the j-mode phonon is proportional to(

v⃗j · n⃗
)
δ(ω − ωin), j⃗k · n⃗ > 0
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Figure 8: Dimensionless total thermal resistance calculated with
different ∆ω, t = 1µm,wg/w = 0.01,w/t = 40.
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Validation of the Simulation
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Figure 9: Effective thermal conductivity varying with the characteristic
length in (a) cross-plane heat conduction and (b) in-plane heat
conduction. Other numerical results come from Wu et al.5

5R. Wu, R. Hu, and X. Luo, “First-principle-based full-dispersion Monte Carlo simulation of the anisotropic
phonon transport in the wurtzite GaN thin film,” Journal of Applied Physics, vol. 119, no. 14, p. 145 706, 2016.
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Isotropic MC
Isotropic Born-von Karman dispersion:

ω(k) = ωm sin(πk/2km)

τ−1 = τ−1
I + τ−1

U = Aω4 + Bω2T exp(−C/T )
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Figure 10: Comparison between first-principle-based predictions and
the empirical model for GaN. (a) Bulk thermal conductivity varying
with temperature. (b) Thermal conductivity accumulation functoin.
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Gray MC

Li et al. compared different methods for calculating the average
MFP, and found that extracting the average MFP from the fitting
of size-dependent effective thermal conductivities well reflects
the phonon ballistic effects.

L (lave ) =
∑

t

∣∣∣∣∣∣13
∑

j

∫ ωj

0

Cjvg,j lj
1 + 4

3
lj
t

dω − 1
1 + 4

3
lavc
t

∣∣∣∣∣∣
2

The fitted average MFP for the phonon properties of GaN
calculated in this work is equal to 300 nm.
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FEM with keff

keff =
1
3

∑
j

∫ ωj

0
ℏω

∂f0
∂T

DOSj(ω)vg,ω,j lm,jdω

lm,j =
l0,j(

1 + 2
3Knt−ω,j

) (
1 + Aw

(wg
w , w

t
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Figure 11: Model-predicted effective thermal conductivity as a
function of wg/w , with w/t = 20.
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Thermal Spreading Resistance
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Figure 12: Dimensionless total thermal resistance as a function of
w/t with (a) t = 0.5 µm,wg/w = 0.005, (b) t = 0.5 µm,wg/w = 0.02,
(c) t = 3 µm,wg/w = 0.005, and (d) t = 3 µm,wg/w = 0.02.
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Cross-Plane Ballistic Effect
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Figure 13: Dimensionless one-dimensional thermal resistance
varying with layer thickness.
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Lateral Ballistic Effect

Rt

R1d−0
=

RF
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Figure 14: Thermal resistance ratio rw varying with the heat source
width wg , t = 1 µm.

Yang Shen Comparison of Simulation Methods for Thermal Spreading Resistance in GaN HEMTs 24 / 29



Computational Efficiency
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Figure 15: Computation time as a function of t , with w/t = 40,
wg/w = 0.01.

The phonon number is chosen as 106, which guarantees the
convergence after verification.
All the simulations are programed in Python with Numba and
carried out with a single processor on Apple M1 Pro chip.
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Conclusion

The first-principle-based steady-state full-band phonon tracing
MC simulations are developed to investigate the thermal
spreading resisatnce in GaN HEMTs.

It is found that in predicting the thermal spreading resistance,
± The empirical isotropic model can reflect the influence of

phonon MFP spectrum but overestimate phonon MFPs.
± By choosing the average MFP properly, the gray-medium

approximation can approximate first-principle-based
predictions roughly.

± Despite the diffusive nature of Fourier’s law, FEM with keff
can be used as a fast approach for junction temperature
predictions to guide device thermal designs.
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Outlook

Finished Work
± phonon dispersion
± Bias-dependent heat generation
± First-principle-based phonon properties

On-going Work
 Hybrid Monte Carlo-diffusion simulation of GaN-on-SiC

devices with full-band phonon properties and interface
transmissitivities

Perspective Work
± Non-equilibrium between electrons and phonons (EMC)
± Transient Simulation
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Thank You!
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