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@ Introduction
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Non-Fourier Heat Conduction in GaN HEMTs
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Figure 1: Comparison of channel temperature between phonon MC
simulation and Fourier’s law calculation'?.

Phonon ballistic transport can significantly increase the channel
temperature.

Q. Hao, H. Zhao, and Y. Xiao, “A hybrid simulation technique for electrothermal studies of two-dimensional
GaN-on-SiC high electron mobility transistors,” Journal of Applied Physics, vol. 121, no. 20, p. 204501, 2017.

2Q. Hao, H. Zhao, Y. Xiao, et al., “Electrothermal studies of GaN-based high electron mobility transistors
with improved thermal designs,” International Journal of Heat and Mass Transfer, vol. 116, pp. 496-506, 2018.
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Phonon Transport Mechanism

Cross-plane ballistic effect: Phonon MFPs comparable with the
thickness of GaN layer

Heat source-related ballistic effect: Phonon MFPs comparable
with the width of heat generation area.
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Figure 2: (a)Thermal conductivity versus film thickness or nanowire
diameter. (b) Effective conductivity versus varying heater sizes®.

3G. Chen, “Non-fourier phonon heat conduction at the microscale and nanoscale,” Nature Reviews Physics,
vol. 3, no. 8, pp. 555-569, 2021.
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Bias-Dependent Phonon Transport
Cross-plane ballistic effect caused by phonon-boundary
scattering is only controlled by film thickness.
Heat source-related ballistic effect is highly bias-dependent.
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Figure 3: Heat source distributions at different biases with
Paiss = 5W/mm, (a) Vy =2V, V4 =3.8V, (b)
Vg=-1V, Vg =67V

4Y. Shen, X.-S. Chen, Y.-C. Hua, et al., “Bias dependence of non-fourier heat spreading in gan hemts,” /EEE
Transactions on Electron Devices, vol. 70, no. 2, pp. 409-417, 2022.
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Influence on Electrical Performance
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Figure 4: Left: Schematic cross-sectional view of the symetric
AlGaN/GaN HEMT, Lg = 2um, Lgs = Lgp = 3 um. Right: Output
characteristics of the AlGaN/GaN HEMT. Test data and simulation
show excellent agreement.®
Electrothermal simulation is based on Fourier’s law with film
thermal conductivity.

5B. Chatterjee, C. Dundar, T. E. Beechem, et al., “Nanoscale electro-thermal interactions in AIGaN/GaN
high electron mobility transistors,” Journal of Applied Physics, vol. 127, no. 4, p. 044502, 2020.
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Influence on Electrical Performance
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Figure 5: (a) Schematic of lateral AlIGaN/GaN HEMT structures on Si
substrates. (b) Comparison between simulation and experiment DC
output characteristics of a single finger lateral HEMT®.

The excellent agreement is geometry- and bias-independent.

% Zhang, M. Sun, Z. Liu, et al., “Electrothermal simulation and thermal performance study of gan vertical
and lateral power transistors,” IEEE transactions on electron devices, vol. 60, no. 7, pp. 2224-2230, 2013.
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This Work

Objective

A Try figuring out the influence of phonon ballistic effects on
the electrical performance of GaN HEMTs.

Electrothermal TCAD simulation and Phonon Monte Carlo
simulation are conducted to investigate self-heating in GaN
HEMTs.
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@ Methodologies
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TCAD Simulation
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Figure 6: Left: Schematic of the GaN-on-SiC HEMT for TCAD
simulation. Right: Output characteristics of the HEMT from —2V to
2V with an interval of 1V extracted from TCAD simulations (lines)

and experimental values (symbols).
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Phonon Monte Carlo Simulation

 An isotropic sine-shaped phonon dispersion (Born-von
Karman dispersion) is used for GaN and SiC,

w(K) = wmsin (7k/2km)

2p0 1738
» Relaxation time is calculaed using Matthiessen’s rule,
T = 41y = Aw* + Bu? Texp(—C/T)

+ Diffuse mismatch model (DMM) is used for interfacial
phonon transport,

_ >_p V2,9,0(w) D2, p(w)
>0 V1,9.0(w) D1 p(w) + 3, V2,g,0(w) D2, p(w)

T12(w)
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Phonon Dispersion and Relaxation time

Table 1: Fitted phonon dispersion and scattering parameters’ .

Parameter (Unit) GaN  SiC

ko(1x10°m~') 1094 8.94
wm(1x10%rad/s) 3.50 7.12
ap (A) 2.87 3.51
A(1x107%g%) 526 1.00
B(1x10""9s/K) 1.10 0.596
C(K) 200 235.0

7Q. Hao, H. Zhao, and Y. Xiao, “A hybrid simulation technique for electrothermal studies of two-dimensional
GaN-on-SiC high electron mobility transistors,” Journal of Applied Physics, vol. 121, no. 20, p. 204501, 2017.
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Phonon Dispersion and Relaxation time
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Figure 7: Thermal conductivity from model calculations (line), and
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from experiments (symbols)®.

8Q. Hao, H. Zhao, and Y. Xiao, “Multi-length scale thermal simulations of GaN-on-SiC high electron mobility

transistors,” in MultiscaleThermal Transport in Energy Systems, Nova Science Publishers, 2016.
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e Results and Discussion
@ Channel Temperature Reconstruction
@ Heat Source-Related Ballistic Effect
@ Cross-Plane Ballistic Effect
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e Results and Discussion
@ Channel Temperature Reconstruction
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Channel Temperature Distribution
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Figure 8: Comparison of channel temperature distributions predicted
by MC simulation and FEM with Ay at different biases with
Pdiss = 5W/mm
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Two-Heat-Source Model®

Py = IgVy4, P2 =0, Vo < Visat
P1 = Id Vdsata P2 = Id(Vd - Vdsat), Vd > Vdsat

Vy < Vgsat: When the device is in the linear regime, all the heat
is dissipated in HS1.

Vg > Vgsat: As the channel is pinched-off and the device works
in the saturation regime, the heat dissipated in HS1 stays the
maximum, and excessive heat is only dissipated in HS2.

The heat source-related ballistic effect becomes noticeable
when heat is dissipated in HS2.

9X. Chen, S. Boumaiza, and L. Wei, “Modeling bias dependence of self-heating in GaN HEMTs using two
heat sources,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3082-3087, 2020.
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Channel Temperature Reconstruction
We use size-dependent film thermal conductivity to reflect the
cross-plane ballistic effect, and set a very low thermal
conductivity in HS2 to reflect the impact of heat source
size-induced ballistic effect.
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Figure 9: Schematic of channel temperature reconstruction.
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Channel Temperature Reconstruction
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Figure 10: Comparison of channel temperature distributions predicted
by MC simulation and FEM with k. at different biases with
Pdiss =5 W/mm
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e Results and Discussion

@ Heat Source-Related Ballistic Effect
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Influence of Heat Source-Related Ballistic Effect
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Figure 11: Channel temperature, electron velocity, electric field, and
electron mobility distributions at Vy; = -1V, Vg3 =6.7 V.
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Device Output Characteristics
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Figure 12: Output characteristics at different biases.

Phonon ballistic effect mainly exists in the high-field region,
where the electron velocity is saturated.
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Simulation of Longer Gate HEMT
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Figure 13: Channel temperature, electron velocity, electric field, and
electron mobility distributions at Vy; = -1V, V4 =6.7 V.
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Device Output Characteristics
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Figure 14: Output characteristics at different biases.

For a longer gate HEMT, the source side of gated channel is
not saturated. However, the heat source is still concentrated at
drain-side gate edge.
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e Results and Discussion

@ Cross-Plane Ballistic Effect
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Influence of Cross-Plane Ballistic Effect
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Figure 15: Channel temperature, electron velocity, electric field, and
electron mobility distributions at V, =0V, Vg =10V.
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Device Output Characteristics
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Figure 16: Output characteristics at different biases.
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Equivalent Channel Temperature'®
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Figure 17: Left: channel temperature profiles at four different biases.
Right: Equivalent channel temperature and maximum channel
temperature versus the power dissipation.

All the conclusions remain reliable after considering phonon
transport, no additional modifications are necessary.

10X Chen, S. Boumaiza, and L. Wei, “Self-heating and equivalent channel temperature in short gate length
GaN HEMTSs,” IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3748-3755, 2019.
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Q Conclusion
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Conclusion

We have investigated self-heating in GaN HEMTSs by integrating
TCAD and phonon MC simulations.

We have examined the influence of the phonon ballistic effect
on electrical performance by setting a low local thermal
conductivity in the high-field region and re-conducting
electrothermal TCAD simulations.

Our findings reveal that, due to velocity saturation, the electrical
performance is nearly unaffected by the heat source-induced
ballistic effect. Instead, it is primarily governed by the film
thickness-dependent cross-plane ballistic effect.
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Thank You!
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